Step 1: Expand the expression using distributive property of cross product.
\[
\mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} + \mathbf{c} \times \mathbf{b}
\]
Step 2: Use the identity \( \mathbf{x} \times \mathbf{y} = -(\mathbf{y} \times \mathbf{x}) \).
Pairs of terms cancel:
\[
\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} = 0, \quad \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{b} = 0, \quad \mathbf{c} \times \mathbf{a} + \mathbf{a} \times \mathbf{c} = 0
\]
Step 3: Conclude result.
\[
\mathbf{a} \times (\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \mathbf{c} \times (\mathbf{a} + \mathbf{b}) = 0
\]