Step 1: Use vector equation formula.
The vector equation of a line passing through point \( (x_0, y_0, z_0) \) and parallel to vector \( \mathbf{b} \) is:
\[
\mathbf{r} = \mathbf{r_0} + \lambda \mathbf{b}
\]
where:
\[
\mathbf{r_0} = 5\hat{i} + 2\hat{j} - 4\hat{k}, \quad \mathbf{b} = 3\hat{i} + 2\hat{j} - 8\hat{k}
\]
Step 2: Write final equation.
\[
\mathbf{r} = (5\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda (3\hat{i} + 2\hat{j} - 8\hat{k})
\]
Step 3: Expand components.
\[
\mathbf{r} = (5 + 3\lambda) \hat{i} + (2 + 2\lambda) \hat{j} + (-4 - 8\lambda) \hat{k}
\]