Step 1: Represent as a matrix equation. \[ AX = B \] where \[ A = \begin{bmatrix} 2 & 3 & 3
1 & -2 & 1
3 & -1 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x
y
z \end{bmatrix}, \quad B = \begin{bmatrix} 5
-4
3 \end{bmatrix} \]
Step 2: Compute \( X = A^{-1} B \). After solving, \[ X = \begin{bmatrix} 1
-2
3 \end{bmatrix} \] Thus, \( x = 1 \), \( y = -2 \), \( z = 3 \).
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]