Step 1: Represent as a matrix equation. \[ AX = B \] where \[ A = \begin{bmatrix} 2 & 3 & 3
1 & -2 & 1
3 & -1 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x
y
z \end{bmatrix}, \quad B = \begin{bmatrix} 5
-4
3 \end{bmatrix} \]
Step 2: Compute \( X = A^{-1} B \). After solving, \[ X = \begin{bmatrix} 1
-2
3 \end{bmatrix} \] Thus, \( x = 1 \), \( y = -2 \), \( z = 3 \).
If matrix \[ A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}, \] then find \( A^{-1} \).
If \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] prove that \[ A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}, \] where \( n \in \mathbb{N} \).
Two parallel plate capacitors of capacitances \( C \) and \( 2C \) are joined with a battery of voltage difference \( V \) as shown in the figure. If the battery is removed and the space between the plates of the capacitor of capacitance \( C \) is completely filled with a material of dielectric constant \( K \), then find out:
Differentiate between interference and diffraction of light. Explain qualitatively the diffraction phenomenon of light by a single slit. Light of 6000 Ã… wavelength is incident normally on a single slit of width \( 3 \times 10^{-4} \, \text{cm} \). Find out the angular width of the central maxima.
Show that the circumference of the orbit of an electron revolving in the \( n \)-th orbit is equal to \( n\lambda \) with the help of Bohr's quantum theory. Also, show the emission and absorption spectral lines between energy levels \( n = 1 \) and \( n = 3 \) of hydrogen atom.
What do you mean by the current sensitivity of a moving coil galvanometer? Resistance of a galvanometer is \( 50 \, \Omega \) and for full-scale deflection, the current is \( 0.05 \, \mathrm{A} \). What would be the required length of a wire to convert it into an ammeter of 5 A range? (Area of cross-section of wire = \( 2.7 \times 10^{-6} \, \mathrm{m^2} \), specific resistance of the wire material = \( 5.0 \times 10^{-7} \, \Omega \cdot \mathrm{m} \))