Step 1: Identify as linear differential equation. Standard form: \[ \frac{dy}{dx} + P(x) y = Q(x) \] where \( P(x) = \frac{1}{x} \) and \( Q(x) = x^2 \).
Step 2: Compute integrating factor (IF). \[ \mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x \] Multiply throughout by \( x \): \[ x \frac{dy}{dx} + y = x^3 \]
Step 3: Solve by integration. \[ \frac{d}{dx} (xy) = x^3 \] \[ xy = \int x^3 dx = \frac{x^4}{4} + C \]
Step 4: Apply initial condition \( y(1) = 1 \). \[ 1(1) = \frac{1}{4} + C \] \[ C = \frac{3}{4} \] Thus, \[ y = \frac{x^4}{4x} + \frac{3}{4x} \] \[ y = \frac{x^3}{4} + \frac{3}{4x} \]
Show that the vectors \( 2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}, 3\hat{i} - 4\hat{j} - 4\hat{k} \) form the vertices of a right-angled triangle.
Find the angle between the lines \[ \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{-5} \quad \text{and} \quad \frac{x+3}{-3} = \frac{y-1}{2} = \frac{z-5}{5}. \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $