Step 1: Identify as linear differential equation. Standard form: \[ \frac{dy}{dx} + P(x) y = Q(x) \] where \( P(x) = \frac{1}{x} \) and \( Q(x) = x^2 \).
Step 2: Compute integrating factor (IF). \[ \mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x \] Multiply throughout by \( x \): \[ x \frac{dy}{dx} + y = x^3 \]
Step 3: Solve by integration. \[ \frac{d}{dx} (xy) = x^3 \] \[ xy = \int x^3 dx = \frac{x^4}{4} + C \]
Step 4: Apply initial condition \( y(1) = 1 \). \[ 1(1) = \frac{1}{4} + C \] \[ C = \frac{3}{4} \] Thus, \[ y = \frac{x^4}{4x} + \frac{3}{4x} \] \[ y = \frac{x^3}{4} + \frac{3}{4x} \]