Step 1: Compute determinant of \( A \).
\[
\det(A) =
\begin{vmatrix}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{vmatrix}
\]
Expanding along first row:
\[
= 1 \begin{vmatrix} 3 & -3 \\ -4 & -4 \end{vmatrix}
- 1 \begin{vmatrix} 1 & -3 \\ -2 & -4 \end{vmatrix}
+ 3 \begin{vmatrix} 1 & 3 \\ -2 & -4 \end{vmatrix}
\]
\[
= 1(3(-4) - (-3)(-4)) - 1(1(-4) - (-3)(-2)) + 3(1(-4) - 3(-2))
\]
\[
= 1(-12 - 12) - 1(-4 - 6) + 3(-4 + 6)
\]
\[
= 1(-24) - 1(-10) + 3(2) = -24 + 10 + 6 = -8
\]
Step 2: Compute adjugate and inverse using \( A^{-1} = \frac{\text{adj}(A)}{\det(A)} \).
After calculation,
\[
A^{-1} = \frac{1}{-8} \begin{bmatrix} -12 & 6 & -2 \\ -2 & -4 & 2 \\ -4 & 2 & 2 \end{bmatrix}
\]
\[
= \begin{bmatrix} \frac{12}{8} & -\frac{6}{8} & \frac{2}{8} \\ \frac{2}{8} & \frac{4}{8} & -\frac{2}{8} \\ \frac{4}{8} & -\frac{2}{8} & -\frac{2}{8} \end{bmatrix}
\]
\[
= \begin{bmatrix} \frac{3}{2} & -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}
\]