If \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] prove that \[ A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}, \] where \( n \in \mathbb{N} \).
Step 1: Prove by induction. \[ \text{For } n = 1, \quad A^1 = A \] \[ \text{Assume } A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}. \] \[ \text{Multiply by } A: \quad A^{n+1} = A^n \cdot A \] \[ A^{n+1} = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] \[ = \begin{bmatrix} \cos (n+1)\theta & \sin (n+1)\theta \\ -\sin (n+1)\theta & \cos (n+1)\theta \end{bmatrix}. \]
Three students, Neha, Rani, and Sam go to a market to purchase stationery items. Neha buys 4 pens, 3 notepads, and 2 erasers and pays ₹ 60. Rani buys 2 pens, 4 notepads, and 6 erasers for ₹ 90. Sam pays ₹ 70 for 6 pens, 2 notepads, and 3 erasers.
Based upon the above information, answer the following questions:
(i) Form the equations required to solve the problem of finding the price of each item, and express it in the matrix form \( A \mathbf{X} = B \).