The given integral is a standard form:
\[
\int \frac{dx}{1+x^2} = \tan^{-1}(x).
\]
Applying limits:
\[
\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1+x^2} = \tan^{-1}(\sqrt{3}) - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right).
\]
\[
\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}, \quad \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}.
\]
\[
\text{Result: } \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}.
\]