Step 1: Write the system of equations in matrix form:
\[
\begin{bmatrix}
2 & 3 & 3
1 & -2 & 1
3 & -1 & -2
\end{bmatrix}
\begin{bmatrix}
x
y
z
\end{bmatrix}
=
\begin{bmatrix}
5
-4
3
\end{bmatrix}
\]
Step 2: Find the determinant \( \Delta \) of the coefficient matrix:
\[
\Delta = \left| \begin{matrix} 2 & 3 & 3
1 & -2 & 1
3 & -1 & -2 \end{matrix} \right| = 2 \cdot \left| \begin{matrix} -2 & 1
-1 & -2 \end{matrix} \right| - 3 \cdot \left| \begin{matrix} 1 & 1
3 & -2 \end{matrix} \right| + 3 \cdot \left| \begin{matrix} 1 & -2
3 & -1 \end{matrix} \right|
\]
Step 3: Calculate the determinant and substitute into the inverse formula for the solution:
\[
\begin{bmatrix} x
y
z \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \Delta_x
\Delta_y
\Delta_z \end{bmatrix}
\]
where \( \Delta_x, \Delta_y, \Delta_z \) are the determinants of the matrices obtained by replacing the respective columns with the constants vector.
\bigskip