Step 1: Define variables.
Let the two numbers be \( x \) and \( y \), so
\[
x + y = 15
\]
The function to minimize is:
\[
S = x^2 + y^2
\]
Step 2: Express in terms of one variable.
Using \( y = 15 - x \), we get:
\[
S = x^2 + (15 - x)^2
\]
Step 3: Differentiate and find the minimum.
\[
\frac{dS}{dx} = 2x + 2(15 - x)(-1) = 2x - 2(15 - x)
\]
Setting \( \frac{dS}{dx} = 0 \):
\[
2x - 2(15 - x) = 0
\]
\[
4x = 30 \Rightarrow x = 7.5, \quad y = 7.5
\]
Thus, the minimum sum of squares occurs when \( x = y = 7.5 \).