Step 1: Apply property of definite integrals.
Using the property:
\[
\int_0^{\pi} f(x) \,dx = \int_0^{\pi} f(\pi - x) \,dx
\]
Let
\[
I = \int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}
\]
Substituting \( x = \pi - t \), we get:
\[
I = \int_0^{\pi} \frac{(\pi - x) \, dx}{a^2 \sin^2 x + b^2 \cos^2 x}
\]
Adding both integrals:
\[
2I = \int_0^{\pi} \frac{x + (\pi - x)}{a^2 \cos^2 x + b^2 \sin^2 x} \, dx
\]
\[
= \pi \int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}
\]
Step 2: Solve integral using substitution.
Using the standard result:
\[
\int_0^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi}{ab}
\]
we get:
\[
2I = \frac{\pi^2}{ab}
\]
Final Answer:
\[
I = \frac{\pi^2}{2ab}
\]