The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
In an electromagnetic system, the quantity representing the ratio of electric flux and magnetic flux has dimension of $\mathrm{M}^{\mathrm{B}} \mathrm{L}^{\mathrm{O}} \mathrm{T}^{\mathrm{B}} \mathrm{A}^{\mathrm{S}}$, where value of 'Q' and 'R' are
Consider two statements: Statement 1: $ \lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5} = \frac{2}{5} $ Statement 2: $ \lim_{x \to 1} x \left( \frac{2}{1-x} \right) = e^2 \; \text{and can be solved by the method} \lim_{x \to 1} \frac{f(x)}{g(x) - 1} $