Let $ f $ be defined as $ R \setminus \{0\} \to R $ such that
$
f(x) = \frac{x}{3} + \frac{3}{x} + 3
$
If $ f(x) $ is strictly increasing in $ (-\infty, \alpha_1) \cup (\alpha_2, \infty) $ and strictly decreasing in $ (\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5) $, then $ \sum_{i=1}^5 (\alpha_i)^2 $ is equal to: