Step 1: Solve for \(n\) from given \(T\) values. Using the property of binomial coefficients: \(T_n = \binom{n}{r}\). Solving \( \binom{n-1}{r} = 28, \binom{n}{r} = 56, \binom{n+1}{r} = 70 \) gives \(n = 8\) and \(r = 3\).
Step 2: Find centroid coordinates. Centroid \(G\) of triangle ABC has coordinates: \[ G = \left(\frac{4\cos t + 2\sin t + 3r_n - 1}{3}, \frac{4\sin t - 2\cos t + r^2_n - n - 1}{3}\right) \]
Step 3: Express \(x\) and \(y\) in terms of \(t\) and simplify. Insert values and simplify the coordinates to express \(x\) and \(y\) as functions of \(t\).
Step 4: Derive the equation of the locus. Substitute \(x\) and \(y\) into \((3x - 1)^2 + (3y)^2 = a\) and simplify to find \(a\).
Conclusion: After solving, \(a = 6\).
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \]
If \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
The function \( f: (-\infty, \infty) \to (-\infty, 1) \), defined by \[ f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}, \] is:
The output of the circuit is low (zero) for:
(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
N equally spaced charges each of value \( q \) are placed on a circle of radius \( R \). The circle rotates about its axis with an angular velocity \( \omega \) as shown in the figure. A bigger Amperian loop \( B \) encloses the whole circle, whereas a smaller Amperian loop \( A \) encloses a small segment. The difference between enclosed currents, \( I_B - I_A \) for the given Amperian loops is: