Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
nCr-1 = 28, nCr = 56
The first equation:
\( \frac{nC_{r-1}}{nC_r} = \frac{28}{56} \)
\( \frac{n}{(n-r+1)} = \frac{1}{2} \)
This simplifies to:
\( \frac{1}{(n-r+1)} = \frac{1}{2} \)
3r = n + 1 ........ (i)
The second equation:
\( \frac{nC_{r-1}}{nC_r} = \frac{56}{70} \)
By solving (i) & (ii):
(r = 3), (n = 8)
A(4cos t, 4sin t) B(2sin t, -2cos t) C(3r - n, r2 - n - 1)
A(4cos t, 4sin t) B(2sin t, -2cos t) C(1, 0)
\( (3x - 1)^2 + (3y)^2 = (4 \cos t + 2 \sin t)^2 + (4 \sin t - \cos t)^2 \)
\( (3x - 1)^2 + (3y)^2 = 20 \)
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \]
If \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: