Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
nCr-1 = 28, nCr = 56
The first equation:
\( \frac{nC_{r-1}}{nC_r} = \frac{28}{56} \)
\( \frac{n}{(n-r+1)} = \frac{1}{2} \)
This simplifies to:
\( \frac{1}{(n-r+1)} = \frac{1}{2} \)
3r = n + 1 ........ (i)
The second equation:
\( \frac{nC_{r-1}}{nC_r} = \frac{56}{70} \)
By solving (i) & (ii):
(r = 3), (n = 8)
A(4cos t, 4sin t) B(2sin t, -2cos t) C(3r - n, r2 - n - 1)
A(4cos t, 4sin t) B(2sin t, -2cos t) C(1, 0)
\( (3x - 1)^2 + (3y)^2 = (4 \cos t + 2 \sin t)^2 + (4 \sin t - \cos t)^2 \)
\( (3x - 1)^2 + (3y)^2 = 20 \)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is