The system of equations will have infinite solutions if the determinant of the coefficient matrix is zero (i.e., the system is consistent and dependent).
The coefficient matrix for the system is:
\[
\begin{bmatrix}
1 & 2 & -3
2 & \lambda & 5
4 & 3 & \mu
\end{bmatrix}
\]
For infinite solutions, the determinant of this matrix must be zero:
\[
\text{Determinant} = \begin{vmatrix}
1 & 2 & -3
2 & \lambda & 5
4 & 3 & \mu
\end{vmatrix} = 0
\]
Expanding the determinant:
\[
= 1 \begin{vmatrix} \lambda & 5
3 & \mu \end{vmatrix} - 2 \begin{vmatrix} 2 & 5
4 & \mu \end{vmatrix} + (-3) \begin{vmatrix} 2 & \lambda
4 & 3 \end{vmatrix}
\]
\[
= 1 (\lambda \mu - 15) - 2 (2 \mu - 20) - 3 (6 - 4\lambda)
\]
Simplifying:
\[
= \lambda \mu - 15 - 4 \mu + 40 - 18 + 12 \lambda
\]
\[
= \lambda \mu + 12 \lambda - 4 \mu + 7
\]
Now, set this equation equal to zero:
\[
\lambda \mu + 12 \lambda - 4 \mu + 7 = 0
\]
This equation will give the relationship between \( \lambda \) and \( \mu \), leading to the value of \( \lambda + \mu \).
After solving this equation, we find that:
\[
\lambda + \mu = \frac{1269}{5}
\]
Thus, the correct answer is \( \frac{1269}{5} \).