The magnetic field due to a current-carrying wire at a distance \( r \) is given by:
\[
B = \frac{\mu_0 I}{2\pi r}.
\]
At point P, the magnetic fields due to wires X and Y must be added vectorially because they are in opposite directions. The field due to wire Y at point P is:
\[
B_Y = \frac{\mu_0 I_Y}{2\pi r_Y},
\]
where \( I_Y = 4 \, \text{A} \) and \( r_Y = 4 \, \text{cm} = 0.04 \, \text{m} \). So:
\[
B_Y = \frac{4\pi \times 10^{-7} \times 4}{2\pi \times 0.04} = 2 \times 10^{-5} \, \text{T}.
\]
The field due to wire X at point P is:
\[
B_X = \frac{\mu_0 I_X}{2\pi r_X},
\]
where \( I_X = 5 \, \text{A} \) and \( r_X = 6 \, \text{cm} = 0.06 \, \text{m} \). So:
\[
B_X = \frac{4\pi \times 10^{-7} \times 5}{2\pi \times 0.06} = \frac{10^{-5}}{0.06} = 1.67 \times 10^{-5} \, \text{T}.
\]
The total magnetic field at point P is:
\[
B_{\text{total}} = B_X + B_Y = 1 \times 10^{-5} \, \text{T} + 2 \times 10^{-5} \, \text{T} = 3 \times 10^{-5} \, \text{T}.
\]
Thus, \( x = 1 \, \text{m} \).
The correct answer is \( \boxed{1} \).