To find the distance \( x \) of point P from wire X, we need to consider the magnetic fields produced by both wires at point P. The magnetic field due to a straight current-carrying wire at a distance \( r \) is given by:
\( B = \frac{\mu_0 I}{2\pi r} \)
For wire Y, at distance 4 cm:
\( B_Y = \frac{\mu_0 \times 4}{2\pi \times 0.04} = \frac{4\pi \times 10^{-7} \times 4}{2\pi \times 0.04} = 10^{-5} \, \text{T} \)
For wire X, at distance \( x \):
\( B_X = \frac{\mu_0 \times 5}{2\pi x} = \frac{4\pi \times 10^{-7} \times 5}{2\pi x} = \frac{10^{-6}}{x} \, \text{T} \)
Since the currents are in opposite directions, their magnetic fields at point P are in opposite directions. Hence, the resultant magnetic field \( B \) is:
\( B = |B_X - B_Y| = 3 \times 10^{-5} \, \text{T} \)
Substituting values:
\( \left|\frac{10^{-6}}{x} - 10^{-5}\right| = 3 \times 10^{-5} \)
Consider \( \frac{10^{-6}}{x} > 10^{-5} \):
\( \frac{10^{-6}}{x} - 10^{-5} = 3 \times 10^{-5} \)
\( \frac{10^{-6}}{x} = 4 \times 10^{-5} \)
\( x = \frac{10^{-6}}{4 \times 10^{-5}} = \frac{1}{4} \times 10^1 = 2.5 \, \text{cm} \)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: