The work done \( W \) by a force \( \mathbf{F} \) on a particle moving through a displacement \( \mathbf{r} \) is given by the dot product:
\[
W = \mathbf{F} \cdot \mathbf{r}.
\]
Given:
\[
\mathbf{F} = 2\hat{i} + b\hat{j} + \hat{k}, \quad \mathbf{r} = \hat{i} - 2\hat{j} - \hat{k}.
\]
The dot product \( \mathbf{F} \cdot \mathbf{r} \) is:
\[
W = (2\hat{i} + b\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} - \hat{k}).
\]
Using the properties of the dot product:
\[
W = 2(1) + b(-2) + 1(-1) = 2 - 2b - 1 = 1 - 2b.
\]
For the work to be zero:
\[
1 - 2b = 0 \quad \Rightarrow \quad b = \frac{1}{2}.
\]
Thus, the value of \( b \) is \( \boxed{\frac{2}{3}} \).