To find the value of \(b\) such that the work done on the particle is zero, we first recall that work done \(W\) by a force \(\mathbf{F}\) on a particle during a displacement \(\mathbf{r}\) is given by the dot product: \(W = \mathbf{F} \cdot \mathbf{r}\).
Given: \(\mathbf{F} = 2\hat{i} + b\hat{j} + \hat{k}\) and \(\mathbf{r} = \hat{i} - 2\hat{j} - \hat{k}\).
We calculate the dot product:
\[\begin{align*} W &= (2\hat{i} + b\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} - \hat{k}) \\ &= (2\hat{i} \cdot \hat{i}) + (2\hat{i} \cdot (-2\hat{j})) + (2\hat{i} \cdot (-\hat{k})) \\ &\quad + (b\hat{j} \cdot \hat{i}) + (b\hat{j} \cdot (-2\hat{j})) + (b\hat{j} \cdot (-\hat{k})) \\ &\quad + (\hat{k} \cdot \hat{i}) + (\hat{k} \cdot (-2\hat{j})) + (\hat{k} \cdot (-\hat{k})) \\ &= 2 \times 1 + 0 + 0 + 0 - 2b + 0 + 0 + 0 -1. \end{align*}\]
The terms \( \hat{i} \cdot \hat{j}, \hat{i} \cdot \hat{k}, \hat{j} \cdot \hat{i}, \hat{j} \cdot \hat{k}, \hat{k} \cdot \hat{i}, \hat{k} \cdot \hat{j} \) are all zero because the unit vectors are orthogonal. Thus, only the coefficients of like unit vectors are non-zero.
Now, simplifying, we have:
\[W = 2 - 2b - 1.\]
We know the work done is zero, so:
\[2 - 2b - 1 = 0 \implies 1 - 2b = 0 \implies 2b = 1 \implies b = \frac{1}{2}.\]
Thus, the value of \(b\) for which the work done is zero is \( \frac{1}{2} \).