For Statement 1, we evaluate the given limit using series expansions:
\[
\lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5}
\]
Expanding the terms:
\[
\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots
\]
\[
\ln \left( \frac{1+x}{1-x} \right) = 2x + \frac{x^3}{3} + \frac{2x^5}{5} + \cdots
\]
Substituting and simplifying:
\[
\frac{x - \frac{x^3}{3} + \frac{x^5}{5} + 2x + \frac{x^3}{3} + \frac{2x^5}{5} - 2x}{x^5}
\]
\[
= \frac{\frac{2x^5}{5}}{x^5} = \frac{2}{5}
\]
Thus, Statement 1 is true.
For Statement 2, we evaluate the given limit:
\[
\lim_{x \to 1} x \left( \frac{2}{1-x} \right)
\]
This does not give \( e^2 \) as claimed.
The expression diverges and does not yield the desired result.
Thus, Statement 2 is false.