Consider two statements:
Statement 1: $ \lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5} = \frac{2}{5} $
Statement 2: $ \lim_{x \to 1} x \left( \frac{2}{1-x} \right) = e^2 \; \text{and can be solved by the method} \lim_{x \to 1} \frac{f(x)}{g(x) - 1} $
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: