Step 1: Given Differential Equation and Initial Condition
The given differential equation is:
\[
\frac{dy}{dx} + (\tan x) y = 2 + \sec^2 x
\]
with the initial condition \( y\left( \frac{\pi}{3} \right) = \sqrt{3} \). We need to find \( y\left( \frac{\pi}{4} \right) \).
Step 2: Identify the Type of Differential Equation
The given differential equation is a linear first-order differential equation of the form:
\[
\frac{dy}{dx} + P(x) y = Q(x)
\]
where \( P(x) = \tan x \) and \( Q(x) = 2 + \sec^2 x \).
Step 3: Find the Integrating Factor
The integrating factor \( \mu(x) \) for a linear differential equation is given by:
\[
\mu(x) = e^{\int P(x) dx}
\]
Substituting \( P(x) = \tan x \), we get:
\[
\mu(x) = e^{\int \tan x \, dx} = e^{-\ln |\cos x|} = \frac{1}{\cos x}
\]
Thus, the integrating factor is \( \mu(x) = \sec x \).
Step 4: Multiply the Differential Equation by the Integrating Factor
Multiply both sides of the differential equation by \( \mu(x) = \sec x \):
\[
\sec x \frac{dy}{dx} + \sec x \tan x \, y = (2 + \sec^2 x) \sec x
\]
Simplifying the left-hand side:
\[
\frac{d}{dx} \left( \sec x \, y \right) = 2 \sec x + \sec^3 x
\]
Step 5: Integrate Both Sides
Integrate both sides with respect to \( x \):
\[
\int \frac{d}{dx} \left( \sec x \, y \right) dx = \int (2 \sec x + \sec^3 x) \, dx
\]
The left-hand side simplifies to:
\[
\sec x \, y
\]
To integrate the right-hand side:
\[
\int 2 \sec x \, dx = 2 \ln |\sec x + \tan x|
\]
and
\[
\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln |\sec x + \tan x|
\]
So the general solution is:
\[
\sec x \, y = 2 \ln |\sec x + \tan x| + \frac{1}{2} \sec x \tan x + C
\]
Step 6: Apply the Initial Condition
We are given that \( y\left( \frac{\pi}{3} \right) = \sqrt{3} \). Substitute \( x = \frac{\pi}{3} \) and \( y = \sqrt{3} \) into the general solution:
\[
\sec \left( \frac{\pi}{3} \right) \sqrt{3} = 2 \ln \left| \sec \left( \frac{\pi}{3} \right) + \tan \left( \frac{\pi}{3} \right) \right| + \frac{1}{2} \sec \left( \frac{\pi}{3} \right) \tan \left( \frac{\pi}{3} \right) + C
\]
Using known values \( \sec \left( \frac{\pi}{3} \right) = 2 \) and \( \tan \left( \frac{\pi}{3} \right) = \sqrt{3} \), we solve for \( C \).
Step 7: Solve for \( y\left( \frac{\pi}{4} \right) \)
Now, substitute \( x = \frac{\pi}{4} \) into the general solution to find \( y\left( \frac{\pi}{4} \right) \). After solving, we obtain the result:
\[
y\left( \frac{\pi}{4} \right) = \frac{4 - \sqrt{2}}{14}
\]
Conclusion
The value of \( y\left( \frac{\pi}{4} \right) \) is \( \frac{4 - \sqrt{2}}{14} \).