The problem deals with understanding the behavior of a simple pendulum under different gravitational conditions. The time period \( T \) of a simple pendulum is given by the formula:
\( T = 2\pi \sqrt{\frac{L}{g}} \)
where:
On Earth, the gravitational acceleration \( g \) is \( \frac{GM_e}{R_e^2} \), where \( G \) is the gravitational constant, \( M_e \) is the Earth's mass, and \( R_e \) is the Earth's radius.
For the other planet, with mass \( 4M_e \) and radius \( 2R_e \), the gravitational acceleration \( g' \) is:
\( g' = \frac{G \cdot 4M_e}{(2R_e)^2} = \frac{4GM_e}{4R_e^2} = \frac{GM_e}{R_e^2} = g \)
Thus, the time period \( T' \) on the planet is:
\( T' = 2\pi \sqrt{\frac{L}{g'}} = 2\pi \sqrt{\frac{L}{g}} = T \)
This confirms that the time period on both Earth and the planet is the same, supporting assertion (A).
Now, consider the reason (R). It states that the mass of the pendulum remains unchanged at both locations. While this is true, the mass of the pendulum does not affect the time period \( T \), as evidenced by the formula. Therefore, (R) does not explain (A).
Thus, the correct choice is: (A) is true but (R) is false.
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.