Let \( x = t^4 \), so that \( dx = 4t^3 dt \).
Substitute into the integral:
\[
f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx = \int \frac{4t^3}{t(1 + t)} \, dt
\]
This simplifies to:
\[
f(x) = 4 \int \frac{t^2 - 1 + 1}{1 + t} \, dt = 4 \int \frac{t^2 - 1}{1 + t} \, dt + 4 \int \frac{1}{1 + t} \, dt
\]
Breaking it further:
\[
f(x) = 4 \left( \int (t-1) \, dt + \int \frac{1}{1 + t} \, dt \right)
\]
We get:
\[
f(x) = 4 \left( \frac{(t-1)^2}{2} + \ln(1 + t) + C \right)
\]
Since \( t = x^{1/4} \), the final expression for \( f(x) \) is:
\[
f(x) = 2 \left( x^{1/4} - 1 \right)^2 + 4 \ln(1 + x^{1/4}) + C
\]
Given \( f(0) = -6 \), we solve for \( C \):
\[
f(0) = 2 \times (0^{1/4} - 1)^2 + 4 \ln(1 + 0^{1/4}) + C = -6 \quad \Rightarrow \quad C = -8
\]
Now, for \( f(1) \):
\[
f(1) = 4 \ln 2 - 8 = 4(\ln 2 - 2)
\]