To solve the problem, we need to count the number of 5-digit numbers $d_1d_2d_3d_4d_5$ where each digit $d_i$ is from the set {0, 1, 2, 3, 4, 5, 6, 7}, the number is greater than 50000, and $d_1 + d_5 \leq 8$.
1. Determine the possible values for $d_1$:
Since the number must be greater than 50000, $d_1$ can only be 5, 6, or 7. Thus, $d_1 \in \{5, 6, 7\}$.
2. Analyze the constraint $d_1 + d_5 \leq 8$ for each possible value of $d_1$:
3. Determine the number of possibilities for $d_2$, $d_3$, and $d_4$:
Since there are no restrictions on $d_2$, $d_3$, and $d_4$ other than belonging to the set {0, 1, 2, 3, 4, 5, 6, 7}, each of them can take 8 possible values. Therefore, there are $8 \times 8 \times 8 = 8^3 = 512$ possibilities for $d_2d_3d_4$.
4. Calculate the total number of such 5-digit numbers:
We consider each case for $d_1$ separately and sum the results:
Therefore, the total number of such 5-digit numbers is $2048 + 1536 + 1024 = 4608$.
Final Answer:
The total number of such 5 digit numbers is $ {4608} $.
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 