To solve the problem, we need to count the number of 5-digit numbers $d_1d_2d_3d_4d_5$ where each digit $d_i$ is from the set {0, 1, 2, 3, 4, 5, 6, 7}, the number is greater than 50000, and $d_1 + d_5 \leq 8$.
1. Determine the possible values for $d_1$:
Since the number must be greater than 50000, $d_1$ can only be 5, 6, or 7. Thus, $d_1 \in \{5, 6, 7\}$.
2. Analyze the constraint $d_1 + d_5 \leq 8$ for each possible value of $d_1$:
3. Determine the number of possibilities for $d_2$, $d_3$, and $d_4$:
Since there are no restrictions on $d_2$, $d_3$, and $d_4$ other than belonging to the set {0, 1, 2, 3, 4, 5, 6, 7}, each of them can take 8 possible values. Therefore, there are $8 \times 8 \times 8 = 8^3 = 512$ possibilities for $d_2d_3d_4$.
4. Calculate the total number of such 5-digit numbers:
We consider each case for $d_1$ separately and sum the results:
Therefore, the total number of such 5-digit numbers is $2048 + 1536 + 1024 = 4608$.
Final Answer:
The total number of such 5 digit numbers is $ {4608} $.
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
