To solve the problem, we need to count the number of 5-digit numbers $d_1d_2d_3d_4d_5$ where each digit $d_i$ is from the set {0, 1, 2, 3, 4, 5, 6, 7}, the number is greater than 50000, and $d_1 + d_5 \leq 8$.
1. Determine the possible values for $d_1$:
Since the number must be greater than 50000, $d_1$ can only be 5, 6, or 7. Thus, $d_1 \in \{5, 6, 7\}$.
2. Analyze the constraint $d_1 + d_5 \leq 8$ for each possible value of $d_1$:
3. Determine the number of possibilities for $d_2$, $d_3$, and $d_4$:
Since there are no restrictions on $d_2$, $d_3$, and $d_4$ other than belonging to the set {0, 1, 2, 3, 4, 5, 6, 7}, each of them can take 8 possible values. Therefore, there are $8 \times 8 \times 8 = 8^3 = 512$ possibilities for $d_2d_3d_4$.
4. Calculate the total number of such 5-digit numbers:
We consider each case for $d_1$ separately and sum the results:
Therefore, the total number of such 5-digit numbers is $2048 + 1536 + 1024 = 4608$.
Final Answer:
The total number of such 5 digit numbers is $ {4608} $.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: