Step 1: Understanding Scalar Multiplication
Since \( kA \) represents the matrix \( A \) multiplied by the scalar \( k \), we equate each entry:
\[
k \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}.
\]
This means:
\[
\begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}.
\]
Step 2: Solving for \( k \)
Comparing the bottom-right elements:
\[
-4k = 24.
\]
Solving for \( k \):
\[
k = -6.
\]
Step 3: Solving for \( a \)
From the top-right elements:
\[
2k = 3a.
\]
Substituting \( k = -6 \):
\[
2(-6) = 3a \quad \Rightarrow \quad -12 = 3a \quad \Rightarrow \quad a = -4.
\]
Step 4: Solving for \( b \)
From the bottom-left elements:
\[
3k = 2b.
\]
Substituting \( k = -6 \):
\[
3(-6) = 2b \quad \Rightarrow \quad -18 = 2b \quad \Rightarrow \quad b = -9.
\]
Thus, the correct values are \( k = -6 \), \( a = -4 \), and \( b = -9 \), which matches option (B).