Given that,
\[
\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \hat{v} \right| = 1
\]
we have:
\[
\left| \frac{\hat{u} + \hat{v}}{2} \right|^2 + \left| \hat{u} \times \hat{v} \right|^2 = 1
\]
Expanding and simplifying,
\[
\frac{2 + 2\cos \theta}{4} + \sin^2 \theta = 1 \quad {since } \hat{u} \cdot \hat{v} = \cos \theta { and } \left| \hat{u} \times \hat{v} \right| = \sin \theta
\]
This implies:
\[
\cos^2 \frac{\theta}{2} = \cos \theta
\]
Hence,
\[
\theta = n\pi \pm \frac{\theta}{2}, \quad n \in \mathbb{Z}
\]
For \(n=1\), we find \(\theta = \frac{2\pi}{3}\). Thus,
\[
\left| \hat{u} \times \hat{v} \right| = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}
\]
This equals:
\[
\left| \frac{\hat{u} - \hat{v}}{2} \right|
\]