If \[ \left[ \begin{array}{cc} 1 & -\tan(\theta) \\ \tan(\theta) & 1 \end{array} \right] \left[ \begin{array}{cc} 1 & \tan(\theta) \\ -\tan(\theta) & 1 \end{array} \right]^{-1} = \left[ \begin{array}{cc} a & -b \\ b & a \end{array} \right], \] then:
If the plane \( 3x + y + 2z + 6 = 0 \) { is parallel to the line} \[ \frac{3x - 1}{2b} = \frac{3 - y}{1} = \frac{z - 1}{a}, \] {then the value of \( 3a + 3b \) is:}
The smallest positive integral value of \( n \) such that \[ \left( \frac{1 + \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}}{1 + \sin \frac{\pi}{8} - i \cos \frac{\pi}{8}} \right)^n \] is purely imaginary, is equal to:
If \( p \neq a \), \( q \neq b \), \( r \neq c \), and the system of equations \[ px + ay + az = 0 \] \[ bx + qy + bz = 0 \] \[ cx + cy + rz = 0 \] has a non-trivial solution, then the value of \[ \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} \] is:
The value of \[ \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} \] is:
Given \[ 2x - y + 2z = 2, \quad x - 2y + z = -4, \quad x + y + \lambda z = 4, \] then the value of \( \lambda \) such that the given system of equations has no solution is: