The general equation of a straight line is: \[ y = mx + c \] where \( m \) is the slope of the line. Comparing with the given equations:
- For \( y = (2 - \sqrt{3})x + 5 \), the slope \( m_1 = 2 - \sqrt{3} \).
- For \( y = (2 + \sqrt{3})x - 7 \), the slope \( m_2 = 2 + \sqrt{3} \). The formula for the angle \( \theta \) between two lines with slopes \( m_1 \) and \( m_2 \) is: \[ \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \]
Step 1: Substituting values \[ \tan \theta = \left| \frac{(2 + \sqrt{3}) - (2 - \sqrt{3})}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right| \] Simplifying the numerator: \[ (2 + \sqrt{3}) - (2 - \sqrt{3}) = 2 + \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3} \]
Simplifying the denominator: \[ 1 + (2 - \sqrt{3})(2 + \sqrt{3}) \] Using the identity \( (a - b)(a + b) = a^2 - b^2 \): \[ 1 + [4 - 3] = 1 + 1 = 2 \]
Thus, \[ \tan \theta = \left| \frac{2\sqrt{3}}{2} \right| = \left| \sqrt{3} \right| \] \[ \tan \theta = \sqrt{3} \] Since \( \tan 60^\circ = \sqrt{3} \), we get: \[ \theta = 60^\circ \] Thus, the angle between the given lines is \( 60^\circ \).
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |