The general equation of a straight line is: \[ y = mx + c \] where \( m \) is the slope of the line. Comparing with the given equations:
- For \( y = (2 - \sqrt{3})x + 5 \), the slope \( m_1 = 2 - \sqrt{3} \).
- For \( y = (2 + \sqrt{3})x - 7 \), the slope \( m_2 = 2 + \sqrt{3} \). The formula for the angle \( \theta \) between two lines with slopes \( m_1 \) and \( m_2 \) is: \[ \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| \]
Step 1: Substituting values \[ \tan \theta = \left| \frac{(2 + \sqrt{3}) - (2 - \sqrt{3})}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right| \] Simplifying the numerator: \[ (2 + \sqrt{3}) - (2 - \sqrt{3}) = 2 + \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3} \]
Simplifying the denominator: \[ 1 + (2 - \sqrt{3})(2 + \sqrt{3}) \] Using the identity \( (a - b)(a + b) = a^2 - b^2 \): \[ 1 + [4 - 3] = 1 + 1 = 2 \]
Thus, \[ \tan \theta = \left| \frac{2\sqrt{3}}{2} \right| = \left| \sqrt{3} \right| \] \[ \tan \theta = \sqrt{3} \] Since \( \tan 60^\circ = \sqrt{3} \), we get: \[ \theta = 60^\circ \] Thus, the angle between the given lines is \( 60^\circ \).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}