Step 1: Consider the given integral:
\[
I = \int \frac{e^x (1 + \sin x)}{1 + \cos x} \, dx.
\]
Using the trigonometric identity:
\[
1 + \cos x = 2 \cos^2 \frac{x}{2}, \quad 1 + \sin x = 2 \cos \frac{x}{2} \sin \frac{x}{2},
\]
we rewrite the integral as:
\[
I = \int \frac{e^x \cdot 2 \cos \frac{x}{2} \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \, dx.
\]
Step 2: Simplify the expression:
\[
I = \int e^x \cdot \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \, dx.
\]
\[
I = \int e^x \tan \frac{x}{2} \, dx.
\]
Step 3: Comparing with the given integral form:
\[
I = e^x f(x) + C.
\]
Thus, we identify:
\[
f(x) = \tan \frac{x}{2}.
\]