If ∫1+cosxex(1+sinx)dx=exf(x)+C, then f(x) is equal to:
Show Hint
For integrals involving trigonometric expressions, use half-angle identities:
1+cosx=2cos22x,1+sinx=2sin2xcos2x.
This simplifies many fraction-based trigonometric integrals.
Step 1: Consider the given integral:
I=∫1+cosxex(1+sinx)dx.
Using the trigonometric identity:
1+cosx=2cos22x,1+sinx=2cos2xsin2x,
we rewrite the integral as:
I=∫2cos22xex⋅2cos2xsin2xdx.Step 2: Simplify the expression:
I=∫ex⋅cos2xsin2xdx.I=∫extan2xdx.Step 3: Comparing with the given integral form:
I=exf(x)+C.
Thus, we identify:
f(x)=tan2x.