Question:

If ex(1+sinx)1+cosxdx=exf(x)+C \int \frac{e^x (1 + \sin x)}{1 + \cos x} \, dx = e^x f(x) + C , then f(x) f(x) is equal to:

Show Hint

For integrals involving trigonometric expressions, use half-angle identities: 1+cosx=2cos2x2,1+sinx=2sinx2cosx2. 1 + \cos x = 2 \cos^2 \frac{x}{2}, \quad 1 + \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}. This simplifies many fraction-based trigonometric integrals.
Updated On: Apr 3, 2025
  • sinx2 \sin \frac{x}{2}
  • cosx2 \cos \frac{x}{2}
  • tanx2 \tan \frac{x}{2}
  • logx2 \log \frac{x}{2}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Consider the given integral: I=ex(1+sinx)1+cosxdx. I = \int \frac{e^x (1 + \sin x)}{1 + \cos x} \, dx. Using the trigonometric identity: 1+cosx=2cos2x2,1+sinx=2cosx2sinx2, 1 + \cos x = 2 \cos^2 \frac{x}{2}, \quad 1 + \sin x = 2 \cos \frac{x}{2} \sin \frac{x}{2}, we rewrite the integral as: I=ex2cosx2sinx22cos2x2dx. I = \int \frac{e^x \cdot 2 \cos \frac{x}{2} \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \, dx. Step 2: Simplify the expression: I=exsinx2cosx2dx. I = \int e^x \cdot \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \, dx. I=extanx2dx. I = \int e^x \tan \frac{x}{2} \, dx. Step 3: Comparing with the given integral form: I=exf(x)+C. I = e^x f(x) + C. Thus, we identify: f(x)=tanx2. f(x) = \tan \frac{x}{2}.
Was this answer helpful?
0
0

Questions Asked in BITSAT exam

View More Questions