Step 1: Differentiate the given equation implicitly.
Given:
\[
x + y = e^{xy}
\]
Differentiating both sides with respect to \( x \), using implicit differentiation:
\[
\frac{d}{dx} (x + y) = \frac{d}{dx} (e^{xy})
\]
Applying differentiation:
\[
1 + \frac{dy}{dx} = e^{xy} \cdot \left( x \frac{dy}{dx} + y \right)
\]
Rearrange to express \( \frac{dy}{dx} \):
\[
1 + \frac{dy}{dx} = e^{xy} (x \frac{dy}{dx} + y)
\]
\[
1 + \frac{dy}{dx} - e^{xy} y = e^{xy} x \frac{dy}{dx}
\]
\[
1 - e^{xy} y = \frac{dy}{dx} (e^{xy} x - 1)
\]
\[
\frac{dy}{dx} = \frac{1 - e^{xy} y}{e^{xy} x - 1}
\]
Step 2: Condition for a tangent parallel to the Y-axis.
A tangent is parallel to the Y-axis when \( \frac{dx}{dy} = 0 \), which means \( \frac{dy}{dx} \) is undefined.
For \( \frac{dy}{dx} \) to be undefined, the denominator must be zero:
\[
e^{xy} x - 1 = 0
\]
\[
e^{xy} x = 1
\]
\[
x = e^{-xy}
\]
Step 3: Check given Option.
For \( (1,0) \):
\[
x = 1, \quad y = 0
\]
\[
e^{(1)(0)} \cdot 1 = 1
\]
\[
1 = 1 \quad {(satisfied)}
\]
Thus, the correct point is \( (1,0) \).