Step 1: Identify direction vectors.
The given lines are in symmetric form: \[ \frac{x - 3}{2} = \frac{y - 2}{3} = \frac{z - 1}{-1} \] \[ \frac{x + 3}{2} = \frac{y - 6}{1} = \frac{z - 5}{3} \]
Direction vectors for the lines:
\[ \vec{d_1} = (2,3,-1), \quad \vec{d_2} = (2,1,3). \] A point on the first line is \( A(3,2,1) \) and a point on the second line is \( B(-3,6,5) \).
Step 2: Compute the shortest distance formula.
The shortest distance between two skew lines is given by:
\[ D = \frac{| (\vec{B} - \vec{A}) \cdot (\vec{d_1} \times \vec{d_2}) |}{|\vec{d_1} \times \vec{d_2}|}. \] First, find \( \vec{B} - \vec{A} \): \[ \vec{B} - \vec{A} = (-3 - 3, 6 - 2, 5 - 1) = (-6,4,4). \]
Step 3: Compute the cross product \( \vec{d_1} \times \vec{d_2} \). \[ \vec{d_1} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 2 & 1 & 3 \end{vmatrix} \] Expanding: \[ \hat{i} \begin{vmatrix} 3 & -1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} \] \[ = \hat{i} (3 \times 3 - (-1 \times 1)) - \hat{j} (2 \times 3 - (-1 \times 2)) + \hat{k} (2 \times 1 - 3 \times 2) \] \[ = \hat{i} (9 + 1) - \hat{j} (6 + 2) + \hat{k} (2 - 6) \] \[ = 10\hat{i} - 8\hat{j} - 4\hat{k}. \]
Step 4: Compute the determinant \( (\vec{B} - \vec{A}) \cdot (\vec{d_1} \times \vec{d_2}) \). \[ (-6,4,4) \cdot (10,-8,-4) \] \[ = (-6 \times 10) + (4 \times -8) + (4 \times -4). \] \[ = -60 - 32 - 16 = -108. \] Taking the absolute value: \[ | -108 | = 108. \]
Step 5: Compute \( |\vec{d_1} \times \vec{d_2}| \). \[ \sqrt{10^2 + (-8)^2 + (-4)^2} = \sqrt{100 + 64 + 16} = \sqrt{180} = 6\sqrt{5}. \]
Step 6: Compute the shortest distance. \[ D = \frac{108}{6\sqrt{5}} = \frac{18}{\sqrt{5}}. \] Thus, the correct answer is: \[ \frac{18}{\sqrt{5}}. \]
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]