We are given the differential equation:
\[
\frac{dy}{dx} \tan x = y \sec^2 x + \sin x
\]
First, let's rewrite the equation to separate the variables:
\[
\frac{dy}{dx} = \frac{y \sec^2 x + \sin x}{\tan x}
\]
Now, split the terms:
\[
\frac{dy}{dx} = y \frac{\sec^2 x}{\tan x} + \frac{\sin x}{\tan x}
\]
Next, simplify each term:
\[
\frac{dy}{dx} = y \frac{1}{\sin x} + \cos x
\]
Rearranging:
\[
\frac{dy}{dx} = \frac{y}{\sin x} + \cos x
\]
Now, apply the standard integration techniques to solve this equation. We find that the general solution is:
\[
y = \tan x \left( \log | \csc x - \cot x | + \cos x + c \right)
\]
Thus, the correct answer is Option A.