Starting with the equation given:
\[
2\cos\left(\cos 120^\circ + \cos 2\theta\right) = 1
\]
This simplifies as:
\[
2\cos\left(-\frac{1}{2} + 2\cos^2\theta - 1\right) = 1
\]
Which further reduces to:
\[
2\cos\left(2\cos^2\theta - \frac{3}{2}\right) = 1
\]
Expanding this, we find:
\[
4\cos^3\theta - 3\cos\theta - 1 = 0
\]
Solving for \(\theta\), we equate to the general solution of trigonometric equations:
\[
3\theta = 2n\pi { or } \theta = \frac{2n\pi}{3}, \quad n \in \mathbb{Z}
\]
Ensuring \(2n\) does not exceed 18, we calculate the sum:
\[
\sum_{n=1}^9 \frac{2n\pi}{3} = \frac{2\pi}{3} \times \frac{9(9+1)}{2} = 30\pi
\]