If $f(x) = \frac{1 - x + \sqrt{9x^2 + 10x + 1}}{2x}$, then $\lim_{x \to -1^-} f(x) =$
Given \( f(x) = \begin{cases} \frac{1}{2}(b^2 - a^2), & 0 \le x \le a \\[6pt] \frac{1}{2}b^2 - \frac{x^2}{6} - \frac{a^3}{3x}, & a<x \le b \\[6pt] \frac{1}{3} \cdot \frac{b^3 - a^3}{x}, & x>b \end{cases} \). Then: