Question:

If \( \vec{a} \) and \( \vec{b} \) are two vectors such that \( |\vec{a}| = \sqrt{14} \), \( |\vec{b}| = \sqrt{14} \), and \( \vec{a} \cdot \vec{b} = -7 \), then \[ \frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|} \] is:

Show Hint

For vector problems, use trigonometric identities and vector product formulas to relate the given quantities and solve for unknowns.
Updated On: May 15, 2025
  • \( \frac{7}{\sqrt{3}} \)
  • \( \sqrt{3} \)
  • \( \frac{49}{\sqrt{3}} \)
  • \( \frac{\sqrt{3}}{7} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given: \[ |\vec{a}| = \sqrt{14}, \quad |\vec{b}| = \sqrt{14}, \quad \vec{a} \cdot \vec{b} = -7 \] We need to find the value of: \[ \frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|} \] Step 1: Use the formula for the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). Step 2: Use the formula for the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substitute the given values: \[ -7 = \sqrt{14} \times \sqrt{14} \cos \theta = 14 \cos \theta \] So: \[ \cos \theta = -\frac{1}{2} \] Step 3: Using \( \sin^2 \theta + \cos^2 \theta = 1 \), we find: \[ \sin^2 \theta = 1 - \left( -\frac{1}{2} \right)^2 = \frac{3}{4} \] Thus: \[ \sin \theta = \frac{\sqrt{3}}{2} \] Step 4: Now substitute \( \sin \theta \) into the formula for the cross product: \[ |\vec{a} \times \vec{b}| = \sqrt{14} \times \sqrt{14} \times \frac{\sqrt{3}}{2} = 14 \times \frac{\sqrt{3}}{2} = 7\sqrt{3} \] Step 5: Finally, calculate the ratio: \[ \frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|} = \frac{7\sqrt{3}}{7} = \sqrt{3} \] % Final Answer \[ \boxed{\sqrt{3}} \]
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions