We are given:
\[
|\vec{a}| = \sqrt{14}, \quad |\vec{b}| = \sqrt{14}, \quad \vec{a} \cdot \vec{b} = -7
\]
We need to find the value of:
\[
\frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|}
\]
Step 1: Use the formula for the magnitude of the cross product:
\[
|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta
\]
where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \).
Step 2: Use the formula for the dot product:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta
\]
Substitute the given values:
\[
-7 = \sqrt{14} \times \sqrt{14} \cos \theta = 14 \cos \theta
\]
So:
\[
\cos \theta = -\frac{1}{2}
\]
Step 3: Using \( \sin^2 \theta + \cos^2 \theta = 1 \), we find:
\[
\sin^2 \theta = 1 - \left( -\frac{1}{2} \right)^2 = \frac{3}{4}
\]
Thus:
\[
\sin \theta = \frac{\sqrt{3}}{2}
\]
Step 4: Now substitute \( \sin \theta \) into the formula for the cross product:
\[
|\vec{a} \times \vec{b}| = \sqrt{14} \times \sqrt{14} \times \frac{\sqrt{3}}{2} = 14 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}
\]
Step 5: Finally, calculate the ratio:
\[
\frac{|\vec{a} \times \vec{b}|}{|\vec{a} \cdot \vec{b}|} = \frac{7\sqrt{3}}{7} = \sqrt{3}
\]
% Final Answer
\[
\boxed{\sqrt{3}}
\]