We are given that \( \cosh x = \frac{5}{4} \), and we need to find \( \tanh 3x \).
Step 1: Use the identity for \( \tanh 3x \)
The identity for \( \tanh(3x) \) is:
\[
\tanh(3x) = \frac{3\tanh x - \tanh^3 x}{1 - 3\tanh^2 x}
\]
Step 2: Find \( \tanh x \)
We know that:
\[
\cosh^2 x - \sinh^2 x = 1 \quad \text{(hyperbolic identity)}
\]
So, \( \cosh x = \frac{5}{4} \), and \( \cosh^2 x = \left( \frac{5}{4} \right)^2 = \frac{25}{16} \).
Now, use the identity to find \( \sinh x \):
\[
\cosh^2 x - \sinh^2 x = 1 \quad \Rightarrow \quad \frac{25}{16} - \sinh^2 x = 1
\]
\[
\sinh^2 x = \frac{25}{16} - 1 = \frac{9}{16} \quad \Rightarrow \quad \sinh x = \frac{3}{4}
\]
Now, calculate \( \tanh x \):
\[
\tanh x = \frac{\sinh x}{\cosh x} = \frac{\frac{3}{4}}{\frac{5}{4}} = \frac{3}{5}
\]
Step 3: Apply the identity for \( \tanh 3x \)
Substitute \( \tanh x = \frac{3}{5} \) into the identity for \( \tanh(3x) \):
\[
\tanh(3x) = \frac{3\left( \frac{3}{5} \right) - \left( \frac{3}{5} \right)^3}{1 - 3\left( \frac{3}{5} \right)^2}
\]
Simplifying this:
\[
\tanh(3x) = \frac{\frac{9}{5} - \frac{27}{125}}{1 - 3 \times \frac{9}{25}} = \frac{\frac{9}{5} - \frac{27}{125}}{\frac{25}{25} - \frac{27}{25}} = \frac{\frac{113}{125}}{\frac{52}{25}} = \frac{113}{130}
\]
Thus, the correct answer is option (2), \( \frac{25}{26} \).