Given: \( \cosh x = \frac{5}{4} \). We want to find \( \tanh 3x \).
First, recall that \(\cosh^2 x - \sinh^2 x = 1\). Thus, \(\sinh x = \sqrt{\cosh^2 x - 1}\).
Substitute \(\cosh x = \frac{5}{4}\):
\(\sinh x = \sqrt{\left(\frac{5}{4}\right)^2 - 1} = \sqrt{\frac{25}{16} - \frac{16}{16}} = \sqrt{\frac{9}{16}} = \frac{3}{4}\).
Now, compute \(\tanh x = \frac{\sinh x}{\cosh x} = \frac{\frac{3}{4}}{\frac{5}{4}} = \frac{3}{5}\).
We utilize the triple angle formula for \(\tanh 3x\):
\(\tanh 3x = \frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x}\).
Substitute \(\tanh x = \frac{3}{5}\):
\(\tanh^3 x = \left(\frac{3}{5}\right)^3 = \frac{27}{125}\),
\(3\tanh x = 3 \times \frac{3}{5} = \frac{9}{5}\),
\(3\tanh^2 x = 3 \left(\frac{3}{5}\right)^2 = 3 \times \frac{9}{25} = \frac{27}{25}\).
Calculate:
\(\tanh 3x = \frac{\frac{9}{5} + \frac{27}{125}}{1 + \frac{27}{25}}\).
Simplify the terms:
\(\frac{9}{5} = \frac{225}{125}\),\(\frac{9}{5} + \frac{27}{125} = \frac{225}{125} + \frac{27}{125} = \frac{252}{125}\),
\(1 + \frac{27}{25} = \frac{25}{25} + \frac{27}{25} = \frac{52}{25}\).
Thus, \(\tanh 3x = \frac{\frac{252}{125}}{\frac{52}{25}} = \frac{252}{125} \times \frac{25}{52} = \frac{252 \times 25}{125 \times 52} = \frac{6300}{6500} = \frac{63}{65}\).
However, this is incorrect. The correct simplification reveals:
\(\tanh 3x = \frac{252 \times 25}{6500} = \frac{6300}{6500} = \frac{63}{65}\).
The correct answer is \(\frac{63}{65}\).