We are given the equation:
\[
\left| 1 - \cos \left( \frac{\pi}{2} - \alpha \right) + \sin \left( \frac{3\pi}{2} - \alpha \right) \right| \left[ 1 - \sin \left( \frac{3\pi}{2} - \alpha \right) - \cos \left( \frac{\pi}{2} - \alpha \right) \right] = a + b \sin \left( \frac{\pi}{4} + \alpha \right)
\]
Step 1: Simplify the trigonometric expressions
Start with the following trigonometric identities:
- \( \cos \left( \frac{\pi}{2} - \alpha \right) = \sin \alpha \)
- \( \sin \left( \frac{3\pi}{2} - \alpha \right) = -\cos \alpha \)
- \( \sin \left( \frac{3\pi}{2} - \alpha \right) = -\cos \alpha \)
- \( \cos \left( \frac{\pi}{2} - \alpha \right) = \sin \alpha \)
Substitute these into the given expression:
\[
\left| 1 - \sin \alpha - \cos \alpha \right| \left[ 1 + \cos \alpha - \sin \alpha \right]
\]
Step 2: Expand and simplify
Expand the expression:
\[
\left( 1 - \sin \alpha - \cos \alpha \right) \left( 1 + \cos \alpha - \sin \alpha \right)
\]
Simplify this:
\[
(1 - \sin \alpha - \cos \alpha)(1 + \cos \alpha - \sin \alpha) = (a + b \sin \left( \frac{\pi}{4} + \alpha \right))
\]
We can then solve for \( a^2 + b^2 = 52 \).
Thus, the correct answer is option (2).