Question:

If \( \tan A + \tan B = x \) and \( \cot A + \cot B = y \), then \( \tan(A + B) = \)

Show Hint

Use the identity for \( \tan(A + B) \) and manipulate the given expressions using trigonometric identities to find the desired result.
Updated On: May 15, 2025
  • \( \frac{xy}{x - y} \)
  • \( \frac{xy}{y - x} \)
  • \( \frac{xy}{x + y} \)
  • \( \frac{x - y}{xy} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the following equations: - \( \tan A + \tan B = x \) - \( \cot A + \cot B = y \) We need to find the value of \( \tan(A + B) \). We use the identity for \( \tan(A + B) \): \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] From the given, \( \tan A + \tan B = x \), so we have: \[ \tan(A + B) = \frac{x}{1 - \tan A \tan B} \] Now, we express \( \tan A \tan B \) in terms of \( y \). We know that: \[ \cot A + \cot B = y \quad \Rightarrow \quad \frac{1}{\tan A} + \frac{1}{\tan B} = y \] This can be rewritten as: \[ \frac{\tan A + \tan B}{\tan A \tan B} = y \quad \Rightarrow \quad \frac{x}{\tan A \tan B} = y \] Thus, \[ \tan A \tan B = \frac{x}{y} \] Now substitute this back into the expression for \( \tan(A + B) \): \[ \tan(A + B) = \frac{x}{1 - \frac{x}{y}} = \frac{x}{\frac{y - x}{y}} = \frac{xy}{y - x} \] Thus, the correct answer is option (2).
Was this answer helpful?
0
0