We are given the following equations:
- \( \tan A + \tan B = x \)
- \( \cot A + \cot B = y \)
We need to find the value of \( \tan(A + B) \).
We use the identity for \( \tan(A + B) \):
\[
\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
\]
From the given, \( \tan A + \tan B = x \), so we have:
\[
\tan(A + B) = \frac{x}{1 - \tan A \tan B}
\]
Now, we express \( \tan A \tan B \) in terms of \( y \). We know that:
\[
\cot A + \cot B = y \quad \Rightarrow \quad \frac{1}{\tan A} + \frac{1}{\tan B} = y
\]
This can be rewritten as:
\[
\frac{\tan A + \tan B}{\tan A \tan B} = y \quad \Rightarrow \quad \frac{x}{\tan A \tan B} = y
\]
Thus,
\[
\tan A \tan B = \frac{x}{y}
\]
Now substitute this back into the expression for \( \tan(A + B) \):
\[
\tan(A + B) = \frac{x}{1 - \frac{x}{y}} = \frac{x}{\frac{y - x}{y}} = \frac{xy}{y - x}
\]
Thus, the correct answer is option (2).