$\displaystyle \int \frac{dx}{\sin(x-a)\cos(x-b)} =$
If $\int \sqrt{x}(1-x^3)^{-1/2} dx = \frac{2}{3}g(f(x))+c$, then
$\int \frac{x^2}{(x^2-1)(x^2+1)} dx =$
$\displaystyle \int_{\frac{1}{25}}^{1} x^{-2} e^{x^{-1/2}} dx =$
The area (in sq. units) bounded by the curves $y=\frac{8}{x}$, $y=2x$ and $x=4$ is