Given:
Matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), where each of \( a, b, c, d \in \{-1, 1\} \)
We are to find the number of **singular matrices**, i.e., matrices with **determinant = 0**.
Step 1: Total number of possible matrices
Each of \( a, b, c, d \) can be either −1 or 1.
So total number of such 2×2 matrices is:
\[
2 \times 2 \times 2 \times 2 = 16
\]
Step 2: Condition for singular matrix
A matrix is singular if its determinant is 0.
For a 2×2 matrix:
\[
\det A = ad - bc = 0
\Rightarrow ad = bc
\]
So we are to count how many combinations of \( a, b, c, d \in \{-1, 1\} \) satisfy \( ad = bc \).
Step 3: List and count valid combinations
Let’s consider all 16 combinations and count how many satisfy \( ad = bc \):
We loop through all 16 combinations manually:
1. \( a = 1, b = 1, c = 1, d = 1 \Rightarrow ad = 1, bc = 1 \) ✅
2. \( a = 1, b = 1, c = 1, d = -1 \Rightarrow ad = -1, bc = 1 \) ❌
3. \( a = 1, b = 1, c = -1, d = 1 \Rightarrow ad = 1, bc = -1 \) ❌
4. \( a = 1, b = 1, c = -1, d = -1 \Rightarrow ad = -1, bc = -1 \) ✅
5. \( a = 1, b = -1, c = 1, d = 1 \Rightarrow ad = 1, bc = -1 \) ❌
6. \( a = 1, b = -1, c = 1, d = -1 \Rightarrow ad = -1, bc = -1 \) ✅
7. \( a = 1, b = -1, c = -1, d = 1 \Rightarrow ad = 1, bc = 1 \) ✅
8. \( a = 1, b = -1, c = -1, d = -1 \Rightarrow ad = -1, bc = 1 \) ❌
9. \( a = -1, b = 1, c = 1, d = 1 \Rightarrow ad = -1, bc = 1 \) ❌
10. \( a = -1, b = 1, c = 1, d = -1 \Rightarrow ad = 1, bc = 1 \) ✅
11. \( a = -1, b = 1, c = -1, d = 1 \Rightarrow ad = -1, bc = -1 \) ✅
12. \( a = -1, b = 1, c = -1, d = -1 \Rightarrow ad = 1, bc = -1 \) ❌
13. \( a = -1, b = -1, c = 1, d = 1 \Rightarrow ad = -1, bc = -1 \) ✅
14. \( a = -1, b = -1, c = 1, d = -1 \Rightarrow ad = 1, bc = -1 \) ❌
15. \( a = -1, b = -1, c = -1, d = 1 \Rightarrow ad = -1, bc = 1 \) ❌
16. \( a = -1, b = -1, c = -1, d = -1 \Rightarrow ad = 1, bc = 1 \) ✅
✅ Valid cases: 1, 4, 6, 7, 10, 11, 13, 16 → total = 8
Final Answer:
\[
\boxed{8}
\]