A matrix is singular if its determinant is zero. The determinant of a 2x2 matrix is given by:
\[
\text{det}(A) = ad - bc
\]
We are given that \( a, b, c, d \in \{-1, 1\} \), so the possible values for \( a, b, c, d \) are all combinations of \( -1 \) and \( 1 \).
For \( A \) to be singular, we need \( ad - bc = 0 \). This implies:
\[
ad = bc
\]
Now, let’s check all the possible combinations of \( a, b, c, d \) where \( a, b, c, d \in \{-1, 1\} \):
- \( a = 1, b = 1, c = 1, d = 1 \), then \( 1 \times 1 - 1 \times 1 = 0 \), so singular.
- \( a = 1, b = 1, c = 1, d = -1 \), then \( 1 \times (-1) - 1 \times 1 = -2 \), not singular.
- \( a = 1, b = 1, c = -1, d = 1 \), then \( 1 \times 1 - 1 \times (-1) = 2 \), not singular.
- \( a = 1, b = 1, c = -1, d = -1 \), then \( 1 \times (-1) - 1 \times (-1) = 0 \), so singular.
- Similarly, check other combinations.
The valid combinations where \( ad - bc = 0 \) are:
- \( (1, 1, 1, 1), (1, -1, 1, -1), (-1, 1, -1, 1), (-1, -1, -1, -1) \)
- These yield 8 singular matrices in total.
Thus, the correct answer is option (4), 8.