We are given that:
\[
\cot x \cot y = a \quad \text{and} \quad x + y = \frac{\pi}{6}
\]
From the identity for \( \cot(x + y) \):
\[
\cot(x + y) = \frac{\cot x \cot y - 1}{\cot x + \cot y}
\]
Substituting \( x + y = \frac{\pi}{6} \), we get:
\[
\cot \left( \frac{\pi}{6} \right) = \frac{\cot x \cot y - 1}{\cot x + \cot y}
\]
Since \( \cot \left( \frac{\pi}{6} \right) = \sqrt{3} \), this becomes:
\[
\sqrt{3} = \frac{a - 1}{\cot x + \cot y}
\]
Let \( t = \cot x + \cot y \). Therefore, we have the equation:
\[
\sqrt{3}t = a - 1
\]
Solving for \( t \), we get:
\[
t = \frac{a - 1}{\sqrt{3}}
\]
Step 1: To form the quadratic equation with roots \( \cot x \) and \( \cot y \), we use the standard form:
\[
t^2 - (\cot x + \cot y)t + \cot x \cot y = 0
\]
Substituting \( \cot x \cot y = a \) and \( \cot x + \cot y = t \), we get:
\[
t^2 - t + a = 0
\]
This simplifies to:
\[
\sqrt{3}t^2 + (1 - a)t + a\sqrt{3} = 0
\]
% Final Answer
\[
\boxed{\sqrt{3}t^2 + (1 - a)t + a\sqrt{3} = 0}
\]