Given:
We are to compute the value of \( p - q \), where:
- \( p \) is the distance from point \( \vec{a} = i + 2j + 3k \) to the plane \( \vec{r} \cdot (2i + 6j - 9k) = -1 \)
- \( q \) is the distance from the origin to the same plane
Formula for Distance from a Point to a Plane:
The distance \( D \) of a point \( \vec{a} \) from a plane \( \vec{r} \cdot \vec{m} = c \) is:
\[
D = \frac{|\vec{a} \cdot \vec{m} - c|}{|\vec{m}|}
\]
Step 1: Find vector \( \vec{m} \)
The normal vector to the plane is \( \vec{m} = 2i + 6j - 9k \)
So, \( |\vec{m}| = \sqrt{2^2 + 6^2 + (-9)^2} = \sqrt{4 + 36 + 81} = \sqrt{121} = 11 \)
Step 2: Find p — distance from point \( i + 2j + 3k \)
Let \( \vec{a} = i + 2j + 3k \)
Then, \( \vec{a} \cdot \vec{m} = (1)(2) + (2)(6) + (3)(-9) = 2 + 12 - 27 = -13 \)
Plane equation: \( \vec{r} \cdot \vec{m} = -1 \Rightarrow c = -1 \)
\[
p = \frac{| -13 - (-1) |}{11} = \frac{|-13 + 1|}{11} = \frac{12}{11}
\]
Step 3: Find q — distance from the origin
Origin \( \vec{a} = 0 \), so \( \vec{a} \cdot \vec{m} = 0 \)
\[
q = \frac{|0 - (-1)|}{11} = \frac{1}{11}
\]
Step 4: Compute p - q
\[
p - q = \frac{12}{11} - \frac{1}{11} = \frac{11}{11} = 1
\]
Final Answer:
\( p - q = \boxed{1} \)