Given:
We need to find the range of the expression:
\[
f(x) = \frac{1}{\sin^2 x + 3\sin x \cos x + 5\cos^2 x}
\]
Step 1: Use substitution
Let’s set \( \sin x = s \), \( \cos x = c \), so that:
\[
f(x) = \frac{1}{s^2 + 3sc + 5c^2}
\]
And we know: \( s^2 + c^2 = 1 \)
Step 2: Express in terms of \( \sin 2x \)
Recall the identity:
\[
\sin 2x = 2\sin x \cos x \Rightarrow \sin x \cos x = \frac{1}{2} \sin 2x
\]
Also, write the original expression as:
\[
f(x) = \frac{1}{\sin^2 x + 3\sin x \cos x + 5\cos^2 x}
\Rightarrow \frac{1}{1 - \cos^2 x + 3\sin x \cos x + 5\cos^2 x}
\Rightarrow \frac{1}{1 + 3\sin x \cos x + 4\cos^2 x}
\]
Now use the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \) and \( \sin x \cos x = \frac{1}{2} \sin 2x \):
\[
f(x) = \frac{1}{1 + 3\left(\frac{1}{2} \sin 2x\right) + 4\left(\frac{1 + \cos 2x}{2}\right)}
= \frac{1}{1 + \frac{3}{2} \sin 2x + 2(1 + \cos 2x)}
\]
\[
= \frac{1}{1 + \frac{3}{2} \sin 2x + 2 + 2\cos 2x}
= \frac{1}{3 + \frac{3}{2} \sin 2x + 2\cos 2x}
\]
Step 3: Let \( t = \sin 2x \), \( u = \cos 2x \)
Then the function becomes:
\[
f(x) = \frac{1}{3 + \frac{3}{2} t + 2u}
\]
We know that \( t^2 + u^2 = 1 \) because \( \sin^2 2x + \cos^2 2x = 1 \)
Step 4: Let’s find the minimum and maximum value of denominator
Let:
\[
D = 3 + \frac{3}{2} t + 2u
\Rightarrow \text{Maximize and minimize } D = 3 + \vec{A} \cdot \vec{v}
\]
where \( \vec{A} = \left( \frac{3}{2}, 2 \right) \), \( \vec{v} = (\sin 2x, \cos 2x) \)
The maximum value of \( \vec{A} \cdot \vec{v} \) occurs when \( \vec{v} \) is in the same direction as \( \vec{A} \):
\[
|\vec{A}| = \sqrt{\left( \frac{3}{2} \right)^2 + 2^2} = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{25}{4}} = \frac{5}{2}
\]
So:
- Maximum of \( D = 3 + \frac{5}{2} = \frac{11}{2} \)
- Minimum of \( D = 3 - \frac{5}{2} = \frac{1}{2} \)
Therefore:
\[
f(x) = \frac{1}{D} \Rightarrow \text{range of } f(x) = \left[ \frac{1}{\frac{11}{2}}, \frac{1}{\frac{1}{2}} \right] = \left[ \frac{2}{11}, 2 \right]
\]
Now express this in proper ascending order:
\[
\text{Range of } f(x) = \left[ \frac{2}{11}, 2 \right]
\Rightarrow \text{So, range of } \boxed{\frac{1}{f(x)} = \left[2, 11\right]}
\]
Final Answer:
\[
\boxed{[2, 11]}
\]