We are given:
- \( \mathbf{a} = 2i + 3j + 6k \)
- \( |\mathbf{a}| = 4 \)
- The angle \( (\mathbf{a}, \mathbf{b}) = \cos^{-1} \left( \frac{4}{21} \right) \)
Step 1: Use the dot product formula
The formula for the dot product is:
\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)
\]
where \( \theta \) is the angle between the two vectors. Given \( (\mathbf{a}, \mathbf{b}) = \cos^{-1} \left( \frac{4}{21} \right) \), we have:
\[
\mathbf{a} \cdot \mathbf{b} = 4 \cdot |\mathbf{b}| \cdot \frac{4}{21}
\]
Step 2: Find the magnitude of \( \mathbf{b} \)
To find the magnitude of \( \mathbf{b} \), we can use the fact that \( |\mathbf{b}| = |\mathbf{a}| \) because the angle \( \mathbf{a} \) and \( \mathbf{b} \) are both constrained in this case. Hence, \( |\mathbf{b}| = 4 \).
Thus, the dot product becomes:
\[
\mathbf{a} \cdot \mathbf{b} = 4 \cdot 4 \cdot \frac{4}{21} = \frac{16}{21}
\]
Step 3: Solve for \( \mathbf{a} + \mathbf{b} \)
Using the previously calculated values, we now compute \( \mathbf{a} + \mathbf{b} \):
\[
\mathbf{a} + \mathbf{b} = i + j + 8k
\]
Thus, the correct answer is option (4).