We are given the probability distribution function:
\[
P(X = x) = k \left( \frac{3}{8} \right)^x \quad \text{for} \quad x = 1, 2, 3, \dots
\]
For \( P(X) \) to be a valid probability distribution, the sum of all probabilities must be 1, i.e.,
\[
\sum_{x=1}^{\infty} P(X = x) = 1
\]
Substitute the given expression for \( P(X = x) \):
\[
\sum_{x=1}^{\infty} k \left( \frac{3}{8} \right)^x = 1
\]
Factor out \( k \) from the sum:
\[
k \sum_{x=1}^{\infty} \left( \frac{3}{8} \right)^x = 1
\]
The sum is a geometric series with the first term \( a = \left( \frac{3}{8} \right) \) and the common ratio \( r = \frac{3}{8} \). The sum of an infinite geometric series is given by:
\[
\sum_{x=1}^{\infty} r^x = \frac{r}{1 - r} \quad \text{for} \quad |r|<1
\]
Substitute \( r = \frac{3}{8} \):
\[
\sum_{x=1}^{\infty} \left( \frac{3}{8} \right)^x = \frac{\frac{3}{8}}{1 - \frac{3}{8}} = \frac{\frac{3}{8}}{\frac{5}{8}} = \frac{3}{5}
\]
Thus, the equation becomes:
\[
k \times \frac{3}{5} = 1
\]
Solve for \( k \):
\[
k = \frac{5}{3}
\]
Thus, the correct answer is option (3), \( \frac{5}{3} \).