We are given the equation:
\[
\frac{3x^3 - x^2 - 2x + 17}{x^4 + x^2 - 12} = \frac{x + 2}{x^2 - 3} + \frac{2x - 3}{x^2 + 4}
\]
The first step is to factorize the denominator of the right-hand side expression. Notice that the denominator \( x^4 + x^2 - 12 \) can be factored as:
\[
x^4 + x^2 - 12 = (x^2 - 3)(x^2 + 4)
\]
Now, rewrite the partial fractions with this common denominator:
\[
\frac{x + 2}{x^2 - 3} = \frac{(x + 2)(x^2 + 4)}{(x^2 - 3)(x^2 + 4)}
\]
\[
\frac{2x - 3}{x^2 + 4} = \frac{(2x - 3)(x^2 - 3)}{(x^2 - 3)(x^2 + 4)}
\]
Now, add these two fractions:
\[
\frac{(x + 2)(x^2 + 4) + (2x - 3)(x^2 - 3)}{(x^2 - 3)(x^2 + 4)}
\]
Simplify the numerator:
\[
(x + 2)(x^2 + 4) = x^3 + 4x + 2x^2 + 8
\]
\[
(2x - 3)(x^2 - 3) = 2x^3 - 6x - 3x^2 + 9
\]
Add the two expressions:
\[
x^3 + 4x + 2x^2 + 8 + 2x^3 - 6x - 3x^2 + 9 = 3x^3 - x^2 - 2x + 17
\]
Thus, the numerator simplifies to \( 3x^3 - x^2 - 2x + 17 \), which matches the numerator on the left-hand side of the equation.
Therefore, the correct answer is \( \frac{2x - 3}{x^2 + 4} \), corresponding to option (3).