Question:

Let \( \mathbf{OA = i + 2j - 2k} \) and \( \mathbf{OB = -2i - 3j + 6k} \) be the position vectors of two points A and B. If C is a point on the bisector of \( \angle AOB \) and \( OC = \frac{\sqrt{42}}{2} \), then \( OC = \)

Show Hint

For finding the position vector of a point on the bisector of an angle, use the formula \( \mathbf{OC} = \frac{\mathbf{OA}}{\|\mathbf{OA}\|} + \frac{\mathbf{OB}}{\|\mathbf{OB}\|} \) and simplify the components.
Updated On: May 15, 2025
  • \( 4i - j + 5k \)
  • \( i + 5j + 4k \)
  • \( 5i + 4j + k \)
  • \( i - 4j + 5k \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the position vectors \( \mathbf{OA = i + 2j - 2k} \) and \( \mathbf{OB = -2i - 3j + 6k} \). We need to find the position vector of point C, which lies on the bisector of \( \angle AOB \). Step 1: Find the direction ratios of vectors \( \mathbf{OA} \) and \( \mathbf{OB} \) The direction ratios of the vectors \( \mathbf{OA} \) and \( \mathbf{OB} \) are the coefficients of \( i, j, k \) in their respective expressions. For \( \mathbf{OA} = i + 2j - 2k \), the direction ratios are \( (1, 2, -2) \). For \( \mathbf{OB} = -2i - 3j + 6k \), the direction ratios are \( (-2, -3, 6) \). Step 2: Use the formula for the bisector The position vector \( \mathbf{OC} \) is given by the formula for the bisector of \( \angle AOB \): \[ \mathbf{OC} = \frac{\mathbf{OA}}{\|\mathbf{OA}\|} + \frac{\mathbf{OB}}{\|\mathbf{OB}\|} \] First, calculate the magnitudes of \( \mathbf{OA} \) and \( \mathbf{OB} \): \[ \|\mathbf{OA}\| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{9} = 3 \] \[ \|\mathbf{OB}\| = \sqrt{(-2)^2 + (-3)^2 + 6^2} = \sqrt{49} = 7 \] Step 3: Find the vector \( \mathbf{OC} \) Now substitute the values into the formula for \( \mathbf{OC} \): \[ \mathbf{OC} = \frac{1}{3}(i + 2j - 2k) + \frac{1}{7}(-2i - 3j + 6k) \] Simplify the terms: \[ \mathbf{OC} = \left( \frac{1}{3}i + \frac{2}{3}j - \frac{2}{3}k \right) + \left( -\frac{2}{7}i - \frac{3}{7}j + \frac{6}{7}k \right) \] Combine the components: \[ \mathbf{OC} = \left( \frac{1}{3} - \frac{2}{7} \right)i + \left( \frac{2}{3} - \frac{3}{7} \right)j + \left( -\frac{2}{3} + \frac{6}{7} \right)k \] Step 4: Simplify the expression First, calculate the coefficients: \[ \frac{1}{3} - \frac{2}{7} = \frac{7 - 6}{21} = \frac{1}{21} \] \[ \frac{2}{3} - \frac{3}{7} = \frac{14 - 9}{21} = \frac{5}{21} \] \[ -\frac{2}{3} + \frac{6}{7} = \frac{-14 + 18}{21} = \frac{4}{21} \] Thus, \( \mathbf{OC} = \frac{1}{21}i + \frac{5}{21}j + \frac{4}{21}k \). Multiply by 21 to remove the denominator: \[ \mathbf{OC} = i + 5j + 4k \] Thus, the correct answer is option (2).
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions