Question:

Let \( \mathbf{OA = i + 2j - 2k} \) and \( \mathbf{OB = -2i - 3j + 6k} \) be the position vectors of two points A and B. If C is a point on the bisector of \( \angle AOB \) and \( OC = \frac{\sqrt{42}}{2} \), then \( OC = \)

Show Hint

For finding the position vector of a point on the bisector of an angle, use the formula \( \mathbf{OC} = \frac{\mathbf{OA}}{\|\mathbf{OA}\|} + \frac{\mathbf{OB}}{\|\mathbf{OB}\|} \) and simplify the components.
Updated On: May 23, 2025
  • \( 4i - j + 5k \)
  • \( i + 5j + 4k \)
  • \( 5i + 4j + k \)
  • \( i - 4j + 5k \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

We are given the position vectors \( \mathbf{OA = i + 2j - 2k} \) and \( \mathbf{OB = -2i - 3j + 6k} \). We need to find the position vector of point C, which lies on the bisector of \( \angle AOB \). Step 1: Find the direction ratios of vectors \( \mathbf{OA} \) and \( \mathbf{OB} \) The direction ratios of the vectors \( \mathbf{OA} \) and \( \mathbf{OB} \) are the coefficients of \( i, j, k \) in their respective expressions. For \( \mathbf{OA} = i + 2j - 2k \), the direction ratios are \( (1, 2, -2) \). For \( \mathbf{OB} = -2i - 3j + 6k \), the direction ratios are \( (-2, -3, 6) \). Step 2: Use the formula for the bisector The position vector \( \mathbf{OC} \) is given by the formula for the bisector of \( \angle AOB \): \[ \mathbf{OC} = \frac{\mathbf{OA}}{\|\mathbf{OA}\|} + \frac{\mathbf{OB}}{\|\mathbf{OB}\|} \] First, calculate the magnitudes of \( \mathbf{OA} \) and \( \mathbf{OB} \): \[ \|\mathbf{OA}\| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{9} = 3 \] \[ \|\mathbf{OB}\| = \sqrt{(-2)^2 + (-3)^2 + 6^2} = \sqrt{49} = 7 \] Step 3: Find the vector \( \mathbf{OC} \) Now substitute the values into the formula for \( \mathbf{OC} \): \[ \mathbf{OC} = \frac{1}{3}(i + 2j - 2k) + \frac{1}{7}(-2i - 3j + 6k) \] Simplify the terms: \[ \mathbf{OC} = \left( \frac{1}{3}i + \frac{2}{3}j - \frac{2}{3}k \right) + \left( -\frac{2}{7}i - \frac{3}{7}j + \frac{6}{7}k \right) \] Combine the components: \[ \mathbf{OC} = \left( \frac{1}{3} - \frac{2}{7} \right)i + \left( \frac{2}{3} - \frac{3}{7} \right)j + \left( -\frac{2}{3} + \frac{6}{7} \right)k \] Step 4: Simplify the expression First, calculate the coefficients: \[ \frac{1}{3} - \frac{2}{7} = \frac{7 - 6}{21} = \frac{1}{21} \] \[ \frac{2}{3} - \frac{3}{7} = \frac{14 - 9}{21} = \frac{5}{21} \] \[ -\frac{2}{3} + \frac{6}{7} = \frac{-14 + 18}{21} = \frac{4}{21} \] Thus, \( \mathbf{OC} = \frac{1}{21}i + \frac{5}{21}j + \frac{4}{21}k \). Multiply by 21 to remove the denominator: \[ \mathbf{OC} = i + 5j + 4k \] Thus, the correct answer is option (2).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:
- \( \vec{OA} = \vec{a} = i + 2j - 2k \)
- \( \vec{OB} = \vec{b} = -2i - 3j + 6k \)
- Point C lies on the bisector of \( \angle AOB \)
- \( |\vec{OC}| = \frac{\sqrt{42}}{2} \)

Step 1: Use angle bisector vector formula
If \( \vec{a} \) and \( \vec{b} \) are the position vectors of points A and B from origin O, then the angle bisector vector (not necessarily of unit length) lies in the direction of:
\[ \vec{v} = \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} \]

Step 2: Find magnitudes of \( \vec{a} \) and \( \vec{b} \)
\[ |\vec{a}| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \]
\[ |\vec{b}| = \sqrt{(-2)^2 + (-3)^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \]

Step 3: Unit vectors in directions of \( \vec{a} \) and \( \vec{b} \)
\[ \frac{\vec{a}}{3} = \frac{1}{3}i + \frac{2}{3}j - \frac{2}{3}k \]
\[ \frac{\vec{b}}{7} = -\frac{2}{7}i - \frac{3}{7}j + \frac{6}{7}k \]

Step 4: Add the unit vectors
\[ \vec{v} = \left( \frac{1}{3} - \frac{2}{7} \right)i + \left( \frac{2}{3} - \frac{3}{7} \right)j + \left( -\frac{2}{3} + \frac{6}{7} \right)k \]
Take common denominators:
\[ \vec{v} = \left( \frac{7 - 6}{21} \right)i + \left( \frac{14 - 9}{21} \right)j + \left( \frac{-14 + 18}{21} \right)k = \frac{1}{21}i + \frac{5}{21}j + \frac{4}{21}k \]

Step 5: Normalize and scale to required length
Magnitude of direction vector:
\[ |\vec{v}| = \sqrt{ \left( \frac{1}{21} \right)^2 + \left( \frac{5}{21} \right)^2 + \left( \frac{4}{21} \right)^2 } = \frac{1}{21} \sqrt{1 + 25 + 16} = \frac{1}{21} \sqrt{42} \]
We are given that \( |\vec{OC}| = \frac{\sqrt{42}}{2} \)

So scale vector \( \vec{v} \) to length \( \frac{\sqrt{42}}{2} \):
\[ \vec{OC} = \left( \frac{\frac{\sqrt{42}}{2}}{\frac{\sqrt{42}}{21}} \right) \cdot \vec{v} = \left( \frac{21}{2} \right) \cdot \vec{v} = \frac{21}{2} \cdot \left( \frac{1}{21}i + \frac{5}{21}j + \frac{4}{21}k \right) = \frac{1}{2}(i + 5j + 4k) \cdot 2 = i + 5j + 4k \]

Final Answer:
\( \vec{OC} = \boxed{i + 5j + 4k} \)
Was this answer helpful?
0
0