We are given:
\[
\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ}
\]
Step 1: Calculate \( \cos 290^\circ \) and \( \sin 250^\circ \).
- \( \cos 290^\circ = \cos (360^\circ - 70^\circ) = \cos 70^\circ \), and from standard trigonometric values, \( \cos 70^\circ = \sin 20^\circ \).
- \( \sin 250^\circ = \sin (270^\circ - 20^\circ) = -\cos 20^\circ \).
Step 2: Substituting these values back into the expression:
\[
\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ} = \frac{1}{\sin 20^\circ} + \frac{1}{-\sqrt{3} \cos 20^\circ}
\]
Step 3: Simplify the expression. Since \( \sin 20^\circ \approx 0.342 \) and \( \cos 20^\circ \approx 0.94 \), we can further simplify:
\[
\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ} \approx \frac{4}{\sqrt{3}}
\]
% Final Answer
\[
\boxed{\frac{4}{\sqrt{3}}}
\]