>
UP Board XII
>
Mathematics
List of top Mathematics Questions asked in UP Board XII
If \( f: \mathbb{R} \to \mathbb{R} \) and \( g: \mathbb{R} \to \mathbb{R} \) be functions defined by \( f(x) = \cos x \) and \( g(x) = 3x^2 \) respectively, then prove that \( gof \neq fog \).
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
Find the angle between the vectors \( -2\hat{i} + \hat{j} + 3\hat{k} \) and \( 3\hat{i} - 2\hat{j} + \hat{k} \).
UP Board XII - 2025
UP Board XII
Mathematics
Vector Algebra
Find the projection of the vector \(\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}\) on the vector \(\vec{b} = \hat{i} + 2\hat{j} + \hat{k}\).
UP Board XII - 2025
UP Board XII
Mathematics
Vector Algebra
If \( A = \{1, 2\} \) and \( B = \{3, 4, 5\} \), then find all number of relations from A to B.
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
The modulus function f: R \( → \) R\(^+\) given by f(x) = |x| is
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
Find the shortest distance between the lines \( \vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k}) \) and \( \vec{r} = (2\hat{i} + \hat{j} - \hat{k}) + \mu(3\hat{i} + \hat{j} + 2\hat{k}) \).
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
If \( [a_{ij}] = 2i - j \), then determine a matrix A of order \( 2 \times 3 \).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
If \( E_1 \) and \( E_2 \) are mutually exclusive events, then prove that \( P(E_1) + P(E_2) = P(E_1 \cup E_2) + P(E_1 \cap E_2) \).
UP Board XII - 2025
UP Board XII
Mathematics
Probability
Write \( \cot^{-1}\left\{\frac{1}{\sqrt{x^2-1}}\right\}; x>1 \) in the simplest form.
UP Board XII - 2025
UP Board XII
Mathematics
Inverse Trigonometric Functions
Find the Cartesian equation of a line which passes through point (3, -2, -5) and is parallel to the vector \( (3\hat{i} + 2\hat{j} - 2\hat{k}) \).
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
The probability of solving a question by the three students A, B, C are respectively \( \frac{3}{10}, \frac{1}{5} \) and \( \frac{1}{10} \). Find the probability of solving the question.
UP Board XII - 2025
UP Board XII
Mathematics
Probability
Find the unit vector perpendicular to each of the vectors \( (\vec{a} + \vec{b}) \) and \( (\vec{a} - \vec{b}) \) where \( \vec{a} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \).
UP Board XII - 2025
UP Board XII
Mathematics
Vector Algebra
The degree of differential equation \[ 9 \frac{d^2y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx}\right)^2 \right\}^{\tfrac{3}{2}} \] is
UP Board XII - 2025
UP Board XII
Mathematics
Differential Equations
If \( y = x^{x^{x^{.... \text{ad inf}}}} \), then prove that \( x\frac{dy}{dx} = \frac{y^2}{1 - y \log x} \).
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
Integrate: \( \int \left(\frac{2 + \sin 2x}{1 + \cos 2x}\right) e^x dx \)
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If \( y = e^{\tan^{-1}x} \), prove that \( (1 + x^2)\frac{d^2y}{dx^2} + (2x - 1)\frac{dy}{dx} = 0 \).
UP Board XII - 2025
UP Board XII
Mathematics
Differential Equations
The value of expression \( \hat{i} \cdot \hat{i} - \hat{j} \cdot \hat{j} + \hat{k} \times \hat{k} \) is
UP Board XII - 2025
UP Board XII
Mathematics
Vector Algebra
Find the principal value of \( \sec^{-1}(-\sqrt{2}) \).
UP Board XII - 2025
UP Board XII
Mathematics
Inverse Trigonometric Functions
Differentiate \( \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) \) with respect to x.
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
If the function f: N \(\rightarrow\) N, is defined by f(x) = x - 1 for all x > 2 and f(1) = f(2) = 1, then f is
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
Find the angle between the pair of lines:
\( \vec{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda(\hat{i} - \hat{j} - 2\hat{k}) \) and
\( \vec{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu(3\hat{i} - 5\hat{j} - 4\hat{k}) \).
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
Prove that \(\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}} = \frac{\pi}{12}\).
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If \( A = \begin{bmatrix} 0 & -\tan{\frac{\alpha}{2}} \\[4pt] \tan{\frac{\alpha}{2}} & 0 \end{bmatrix} \), then prove that \[ (I + A) = (I - A)\begin{bmatrix} \cos{\alpha} & -\sin{\alpha} \\[4pt] \sin{\alpha} & \cos{\alpha} \end{bmatrix}. \]
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Solve the system of equations by matrix method:
\( 3x - 2y + 3z = 8 \)
\( 2x + y - z = 1 \)
\( 4x - 3y + 2z = 4 \)
UP Board XII - 2025
UP Board XII
Mathematics
Mathematics
Find the inverse of the matrix \( A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Prev
1
2
3
...
25
Next