>
UP Board XII
>
Mathematics
List of top Mathematics Questions asked in UP Board XII
If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), then show that \(A^2 - 5A + 7I = O\). Using this, obtain \(A^{-1}\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
If \( y = \sin^{-1} x \), then prove that \( (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0 \).
UP Board XII - 2025
UP Board XII
Mathematics
Differential Equations
If \(A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}\), then find \(A^{-1}\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Solve: \( (1 + x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0 \).
UP Board XII - 2025
UP Board XII
Mathematics
Differential Equations
Prove that \(\int_0^\pi \sqrt{\frac{1+\cos 2x}{2}} \, dx = 2\).
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
At \( t = 2 \), the slope of the vector function \( \vec{f}(t) = 2\hat{i} + 3\hat{j} + 5t^2\hat{k} \) is
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If the relation \( R \) is given by \[ R = \{(4, 5), (1, 4), (4, 6), (7, 6), (3, 7)\}, \] then find \( R^{-1} \circ R^{-1} \).
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
If \(A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}\) and \(B = \begin{bmatrix} 0 & 1/4 \\ 0 & 0 \\ 1/2 & 1/8 \end{bmatrix}\), then prove that \(|C| = 1\), where \(C = (A')' B\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
If \( A \) and \( B \) are two matrices of order \( n \) which are invertible, then prove that \( (AB)^{-1} = B^{-1}A^{-1} \).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
If function \( f \) is defined as \[ f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \] then prove that \( f \) is continuous.
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If \(y = \cos^{-1} x\), then show that \((1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0\).
UP Board XII - 2025
UP Board XII
Mathematics
Differential Equations
For matrix \( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \) show that \( A^3 - 6A^2 + 5A + 11I = 0 \) and with the help of this find \( A^{-1} \).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
If the matrices \(A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}\) and \(B = \begin{bmatrix} 0 & 1/4 \\ 0 & 0 \\ 1/2 & 1/8 \end{bmatrix}\), then prove that \((A')' B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Find the value of \( \hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j}) \).
UP Board XII - 2025
UP Board XII
Mathematics
Vector Algebra
The vector function is given by \(\vec{f}(t) = t\hat{i} + t^2\hat{j} + 5\hat{k}\), then at point \(t = 1\) the slope is
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If \(\int x \log x \, dx = \frac{x^2}{2} f(x) - \frac{x^2}{4} + c\), then \( f(x) \) is
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
Suppose that \( A = \{2, 3, 4, 5\} \) and a relation \( R \) on \( A \) is defined by \( R = \{(a, b) : a, b \in A, a - b = 12\} \). Then the set \( R \) is
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
Prove that \(\int_{0}^{\pi/4} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log 2\).
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
If \( F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \), prove that \(F(x)F(y) = F(x+y)\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Prove that \(\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}\), \(x \in (0, \pi/4)\).
UP Board XII - 2025
UP Board XII
Mathematics
Trigonometric Identities
Find the shortest distance between the lines whose vector equations are:
\(\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}\) and \(\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}\).
UP Board XII - 2025
UP Board XII
Mathematics
3D Geometry
If \(A = \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix}\) and \(I\) is the identity matrix of order 2, prove that \(I+A = (I-A)\begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}\).
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Prove that \(\int_0^{\pi/2} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2\).
UP Board XII - 2025
UP Board XII
Mathematics
Calculus
The relation \( R \), defined by \( R = \{ (T_1, T_2) : T_1 \text{ is similar to } T_2 \} \), in the set \( A \) of all triangles, is
UP Board XII - 2025
UP Board XII
Mathematics
Relations and functions
If \( 2X + Y = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \) and \( Y = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \), then \( X \) will be
UP Board XII - 2025
UP Board XII
Mathematics
Matrices
Prev
1
2
3
...
18
Next