Reflexivity: To prove \( R \) is an equivalence relation, we verify reflexivity, symmetry, and transitivity:
Symmetry: For any \( a \in \mathbb{Z} \), \( a - a = 0 \), which is a multiple of \( 5 \). Thus, \( (a, a) \in R \).
If \( (a, b) \in R \), then \( a - b = 5k \) for some \( k \in \mathbb{Z} \).
Transitivity: This implies \( b - a = -5k \), which is also a multiple of \( 5 \). Thus, \( (b, a) \in R \). If \( (a, b) \in R \) and \( (b, c) \in R \), then \( a - b = 5k \) and \( b - c = 5m \) for \( k, m \in \mathbb{Z} \).
Adding these, \( a - c = 5(k + m) \), which is a multiple of \( 5 \). Thus, \( (a, c) \in R \). Therefore, \( R \) is an equivalence relation.
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \]If
\[ A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2 \end{bmatrix}, \]
then find the value of \( (AB)^{-1} \).
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $