To find the shortest distance between two skew lines, we use the formula:
\[ d = \frac{| (\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1}) |}{|\mathbf{b_1} \times \mathbf{b_2}|} \]where:
From the given equations:
\[ \mathbf{a_1} = (1,1,0), \quad \mathbf{a_2} = (2,1,-1) \] \[ \mathbf{b_1} = (2,-1,1), \quad \mathbf{b_2} = (3,-5,2). \]First, we compute \( \mathbf{b_1} \times \mathbf{b_2} \):
\[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} \] \[ = \hat{i} ( (-1)(2) - (1)(-5) ) - \hat{j} ( (2)(2) - (1)(3) ) + \hat{k} ( (2)(-5) - (-1)(3) ). \] \[ = \hat{i} (-2 + 5) - \hat{j} (4 - 3) + \hat{k} (-10 + 3). \] \[ = 3\hat{i} - \hat{j} - 7\hat{k}. \]Now, compute the magnitude:
\[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{3^2 + (-1)^2 + (-7)^2} = \sqrt{9 + 1 + 49} = \sqrt{59}. \]Next, compute \( (\mathbf{a_2} - \mathbf{a_1}) \):
\[ \mathbf{a_2} - \mathbf{a_1} = (2 - 1, 1 - 1, -1 - 0) = (1,0,-1). \]Now, compute the dot product:
\[ (\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1}) \] \[ = (3\hat{i} - \hat{j} - 7\hat{k}) \cdot (1,0,-1). \] \[ = (3 \times 1) + (-1 \times 0) + (-7 \times -1). \] \[ = 3 + 0 + 7 = 10. \]Finally, compute the shortest distance:
\[ d = \frac{|10|}{\sqrt{59}} = \frac{10}{\sqrt{59}}. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $