Suppose that \( A = \{ 1, 2, 3 \} \), \( B = \{ 4, 5, 6, 7 \} \), and \( f = \{ (1, 4), (2, 5), (3, 6) \} \) be a function from \( A \) to \( B \). Then \( f \) is:
Step 1: A function is one-one (injective) if for every distinct pair \( a, b \in A \), \( f(a) \neq f(b) \). In this case, \( f(1) = 4 \), \( f(2) = 5 \), and \( f(3) = 6 \), so each element in \( A \) maps to a distinct element in \( B \). Thus, the function is one-one.
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.