Suppose that \( A = \{ 1, 2, 3 \} \), \( B = \{ 4, 5, 6, 7 \} \), and \( f = \{ (1, 4), (2, 5), (3, 6) \} \) be a function from \( A \) to \( B \). Then \( f \) is:
Step 1: A function is one-one (injective) if for every distinct pair \( a, b \in A \), \( f(a) \neq f(b) \). In this case, \( f(1) = 4 \), \( f(2) = 5 \), and \( f(3) = 6 \), so each element in \( A \) maps to a distinct element in \( B \). Thus, the function is one-one.
Mention the events related to the following historical dates:
\[\begin{array}{rl} \bullet & 321 \,\text{B.C.} \\ \bullet & 1829 \,\text{A.D.} \\ \bullet & 973 \,\text{A.D.} \\ \bullet & 1336 \,\text{A.D.} \\ \bullet & 1605 \,\text{A.D.} \\ \bullet & 1875 \,\text{A.D.} \\ \bullet & 1885 \,\text{A.D.} \\ \bullet & 1907 \,\text{A.D.} \\ \bullet & 1942 \,\text{A.D.} \\ \bullet & 1935 \,\text{A.D.} \end{array}\]