Take the logarithm of both sides:
\[ \ln y = x \ln x. \]Differentiate with respect to \( x \):
\[ \frac{1}{y} \frac{dy}{dx} = \ln x + 1. \]Multiply through by \( y = x^x \):
\[ \frac{dy}{dx} = x^x (\ln x + 1). \]Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]