Take the logarithm of both sides:
\[ \ln y = x \ln x. \]Differentiate with respect to \( x \):
\[ \frac{1}{y} \frac{dy}{dx} = \ln x + 1. \]Multiply through by \( y = x^x \):
\[ \frac{dy}{dx} = x^x (\ln x + 1). \]Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.